
International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1804
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 STAMP: ENABLING PRIVACY-
PRESERVING LOCATION PROOFS

FOR MOBILE USERS
Authors Name/s A. Vigneysh Aravindh

Department of Computer Science and Engineering
S.R.M University

Chennai 600 026, India
Email ID: - vigneysharavindh@gmail.com

Abstract- Location-based services are quickly becoming immensely popular. In addition to services based on
users' current location, many potential services rely on users' location history, or their spatial-temporal
provenance. Malicious users may lie about their spatial-temporal provenance without a carefully designed
security system for users to prove their past locations. In this paper, we present the Spatial- Temporal
provenance Assurance with Mutual Proofs (STAMP) scheme. STAMP is designed for ad-hoc mobile users
generating location proofs for each other in a distributed setting. However, it can easily accommodate trusted
mobile users and wireless access points. STAMP ensures the integrity and non-transferability of the location
proofs and protects users' privacy. A semi-trusted Certification Authority is used to distribute cryptographic
keys as well as guard users against collusion by a light-weight entropy-based trust evaluation approach. Our
prototype implementation on the Android platform shows that STAMP is low-cost in terms of computational and
storage resources. Extensive simulation experiments show that our entropy-based trust model is able to
achieve high collusion detection accuracy.

Keywords— Stamp, enabling, privacy-preserving location proofs,

—————————— ——————————

1. INTRODUCTION

1.1 GENERAL

The explosive growth of Internet-capable and location

aware mobile devices and the surge in social network

usage are fostering collaborative information

generation and sharing on an unprecedented scale. In

particular, IDC believes that total worldwide

Smartphone shipments will reach 659.8 million units in

2012 and will grow at a CAGR of 18.6 percent until

2016.1 Almost all smartphones have cellular/ Wi-Fi

Internet access and can always acquire their precise

locations via pre-installed positioning software. Also

owing to the growing popularity of social networks, it

is more and more convenient and motivating for mobile

users to share with others their experience with all

kinds of points of interests (POIs) such as bars,

restaurants, grocery stores, coffee shops, and hotels.

Meanwhile, it becomes commonplace for people to

perform various spatial POI queries at online location-

based service providers (LBSPs) such as Google and

Yelp.

1.2 OBJECTIVE.

This paper focuses on spatial top-k queries, and the

term “spatial” will be omitted hereafter for brevity. We

observe two essential drawbacks with current top-k

query services. First, individual LBSPs often have very

small data sets comprising POI reviews. This would

largely affect the usefulness and eventually hinder

themore prevalent use of spatial top-k query services

1.3 DESCRIPTION

The data sets at individual LBSPs maynot cover all the

Italian restaurants within a search radius. Additionally,

the same restaurant may receive diverse ratings at

different LBSPs, so users may get confused by very

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1805
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

different query results from different LBSPs for the

same query. A leading reason for limited data sets at

individual LBSPs is that people tend to leave reviews

for the same POI at one or at most only a few LBSPs’s

websites which they often visit. Second, LBSPs may

modify their data sets by deleting some reviews or

adding fake reviews and return tailored query results in

favor of the restaurants that are willing to pay or

against those that refuse to pay.2 Even if LBSPs are not

malicious, they may return unfaithful query results

under the influence of various attacks such as the Sybil

attack [2], [3] whereby the same attacker can submit

many fake reviews for the same POI. In either case,

top-k query users may be misled by the query results to

make unwise decisions. A promising solution to the

above two issues is to introduce some trusted data

collectors as the central hubs for collecting POI

reviews. In particular, data collectors can offer various

incentives, such as free coffee coupons, for stimulating

review submissions and then profit by selling the

review data to individual LBSPs. Instead of submitting

POI reviews to individual LBSPs, people. Similar

misbehaviour has been widely reported for the web-

search industry. Data contributors) can now submit

them to a few data collectors to earn rewards. The data

sets maintained by data collectors can thus be

considered the union of the small data sets currently at

individual LBSPs. Such centralized data collection also

makes it much easier and feasible for data collectors to

employ sophisticated defences, such as [2], [3], to filter

out fake reviews from malicious entities like Sybil

attackers. Data collectors can be either new service

providers or more preferably existing ones with a large

user base, such as Google, Yahoo, Facebook, Twitter,

and MSN. Many of these service providers (e.g.,

Google) have already been collecting reviews from

their users and offered open APIs for exporting selected

data from their systems. We postulate that they may act

as location-based data collectors and sellers if sound

techniques and business models are in place. The above

system model is also highly beneficial for LBSPs. In

particular, they no longer need struggle to solicit

faithful user reviews, which is often a daunting task

especially for small/medium-scale LBSPs. Instead, they

can focus their limited resources on developing

appealing functionalities (such as driving directions and

aerial photos) combined with the high-quality review

data purchased from data collectors. The query results

they can provide will be much more trustworthy, which

would in turn help them attract more and more users.

This system model thus can greatly help lower the

entrance bar for new LBSPs without sufficient funding

and thus foster the prosperity of location- based

services and applications. A main challenge for

realizing the appealing system above is how to deal

with untrusted and possibly malicious LBSPs.

Specifically, malicious LBSPs may still modify the

data sets from data collectors and provide biased top-k

query results in favor of POIs willing to pay. Even

worse, they may falsely claim generating query results

based on the review data from trusted data collectors

which they actually did not purchase. Moreover,

nonmalicious LBSPs may be compromised to return

fake top-k query results.

In this paper, we propose three novel schemes to tackle

the above challenge for fostering the practical

deployment and wide use of the envisioned system.

The key idea of our schemes is that the data collector

precomputes and authenticates some auxiliary

information (called authenticated hints) about its data

set, which will be sold along with its data set to LBSPs.

To faithfully answer a top-k query, a LBSP need return

the correct top-k POI data records as well as proper

authenticity and correctness proofs constructed from

authenticated hints. The authenticity proof allows the

query user to confirm that the query result only consists

of authentic data records from the trusted data

collector’s data set, and the correctness proof enables

the user to verify that the returned top-k POIs are the

true ones satisfying the query. The first two schemes

both target snapshot top-k queries but differ in how

authenticated hints are precomputed and how

authenticity and correctness proofs are constructed and

verified as well as the related communication and

computation overhead. The third scheme, built upon

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1806
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

the first scheme, realizes efficient and verifiable

moving top-k queries. The efficacy and efficiency of

our schemes are thoroughly analyzed and evaluated

through detailed simulation studies. The rest of this

paper is organized as follows. Section 2 discusses the

related work, and Section 3 gives the problem

formulation. Section 4 presents two schemes for secure

snapshot top-k query processing, which are extended

for secure moving top-k query processing in Section 5.

All the schemes are then thoroughly analyzed in

Section 6 and evaluated via detailed simulations in

Section 7. This paper is finally concluded in Section 8.

2. SYSTEM ANALYSIS

2.1 LITERATURE SURVEY

Title: -“Secure Top-k Query Processing via Untrusted

Location-Based Service Providers”

Author: R. Zhang, Y. Zhang, and C. Zhang

Year: 2016

Description:- This paper considers a novel distributed

system for collaborative location-based information

generation and sharing which become increasingly

popular due to the explosive growth of Internet-capable

and location-aware mobile devices. The system

consists of a data collector, data contributors, location-

based service providers (LBSPs), and system users.

The data collector gathers reviews about points-of-

interest (POIs) from data contributors, while LBSPs

purchase POI data sets from the data collector and

allow users to perform spatial top-k queries which ask

for the POIs in a certain region and with the highest k

ratings for an interested POI attribute. In practice,

LBSPs are untrusted and may return fake query results

for various bad motives, e.g., in favor of POIs willing

to pay. This paper presents three novel schemes for

users to detect fake spatial snapshot and moving top-k

query results as an effort to foster the practical

deployment and use of the proposed system. The

efficacy and efficiency of our schemes are thoroughly

analyzed and evaluated

Title: - SybilGuard: Defending against Sybil Attacks

via Social Networks

Author: H. Yu, M. Kaminsky, P. Gibbons, and A.

Flaxman

Year: 2014

Description: Peer-to-peer and other decentralized,

distributed systems are known to be particularly

vulnerable to sybil attacks. In a Sybil attack, a

malicious user obtains multiple fake identities and

pretends to be multiple, distinct nodes in the system.

By controlling a large fraction of the nodes in the

system, the malicious user is able to “out vote” the

honest users in collaborative tasks such as Byzantine

failure defences. This paper presents SybilGuard, a

novel protocol for limiting the corruptive influences of

sybil attacks. Our protocol is based on the “social

network” among user identities, where an edge between

two identities indicates a human-established trust

relationship. Malicious users can create many identities

but few trust relationships. Thus, there is a

disproportionately-small “cut” in the graph between the

sybil nodes and the honest nodes. SybilGuard exploits

this property to bound the number of identities a

malicious user can create. We show the effectiveness of

SybilGuard both analytically and experimentally.

Title: - SybilLimit: A Near-Optimal Social Network

Defence against Sybil Attacks

Author: H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao

Year: 2015

Description:- Decentralized distributed systems such

as peer-to-peer systems are particularly vulnerable to

sybil attacks, where a malicious user pretends to have

multiple identities (called sybil nodes). Without a

trusted central authority, defending against sybil attacks

is quite challenging. Among the small number of

decentralized approaches, our recent SybilGuard

protocol [H. Yu et al., 2006] leverages a key insight on

social networks to bound the number of sybil nodes

accepted. Although its direction is promising,

SybilGuard can allow a large number of sybil nodes to

be accepted. Furthermore, SybilGuard assumes that

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1807
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

social networks are fast mixing, which has never been

confirmed in the real world. This paper presents the

novel SybilLimit protocol that leverages the same

insight as SybilGuard but offers dramatically improved

and near-optimal guarantees. The number of sybil

nodes accepted is reduced by a factor of

ominus(radicn), or around 200 times in our experiments

for a million-node system. We further prove that

SybilLimit's guarantee is at most a log n factor away

from optimal, when considering approaches based on

fast-mixing social networks. Finally, based on three

large-scale real-world social networks, we provide the

first evidence that real-world social networks are

indeed fast mixing. This validates the fundamental

assumption behind SybilLimit's and SybilGuard's

approach.

Title:- Providing Database as a Service

Author:- H. Hacig€um€us, S. Mehrotra, and B. Iyer

Description:- We explore a novel paradigm for data

management in which a third party service provider

hosts "database as a service", providing its customers

with seamless mechanisms to create, store, and access

their databases at the host site. Such a model alleviates

the need for organizations to purchase expensive

hardware and software, deal with software upgrades,

and hire professionals for administrative and

maintenance tasks which are taken over by the service

provider. We have developed and deployed a database

service on the Internet, called NetDB2, which is in

constant use. In a sense, a data management model

supported by NetDB2 provides an effective mechanism

for organizations to purchase data management as a

service, thereby freeing them to concentrate on their

core businesses. Among the primary challenges

introduced by "database as a service" are the additional

overhead of remote access to data, an infrastructure to

guarantee data privacy, and user interface design for

such a service. These issues are investigated. We

identify data privacy as a particularly vital problem and

propose alternative solutions based on data encryption.

The paper is meant as a challenge for the database

community to explore a rich set of research issues that

arise in developing such a service.

2.2 EXISTING SYSTEM

Existing schemes which require multiple trusted or

semi-trusted third parties, STAMP requires only Single

semi-trusted third party which can be embedded in a

Certificate Authority (CA). We design our system with

an objective of protecting users' anonymity and

location privacy. No parties other than verifiers could

see both a user's identity and STP information (verifiers

need both identity and STP information in order to

perform verification and provide services). Users are

given the flexibility to choose the location granularity

level that is revealed to the verifier. We examine two

type s of collusion attacks: (1) A user who is at

an intended location masquerades s another

colluding user and obtains STP proofs for . This

attack has never been addressed in any existing STP

proof schemes. (2) Colluding users mutually generate

fake STP proofs for each other. There have been efforts

to address this type of collusion. However, existing

solutions suffer from high computational cost and low

scalability. Particularly, the latter collusion scenario is

in fact the challenging Terrorist Fraud attack, which is

a critical issue for our targeted system, but none of the

existing systems has addressed it. We integrate the

Bussard-Bagga distance bounding protocol into

STAMP to protect our scheme against this collusion

attack. Collusion scenario (1) is hard to prevent without

a trusted third party. To make our system resilient to

this attack, we propose an entropy-based trust model to

detect the collusion scenario. We implemented STAMP

on the Android platform and carried out extensive

validation experiments. The experimental results show

that STAMP requires low computational overhead.

DISADVANTAGES:

Solutions suffer from high computational cost and low

scalability. Particularly, the latter collusion scenario is

in fact the challenging Terrorist Fraud attack, which is

a critical issue for our targeted system, but none of the

existing systems has addressed it.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1808
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2.3 PROPOSED SYSTEM

In this paper, we propose an STP proof scheme named

Spatial-Temporal provenance Assurance with Mutual

Proofs (STAMP). STAMP aims at ensuring the

integrity and non-transferability of the STP proofs, with

the capability of protecting users' privacy. Most of the

existing STP proof schemes rely on wireless

infrastructure (e.g., WiFi APs) to create proofs for

mobile users. However, it may not be feasible for all

types of applications, e.g., STP proofs for the green

commuting and battlefield examples certainly cannot

be obtained from wireless APs. To target a wider range

of applications, STAMP is based on a distributed

architecture. Co-located mobile devices mutually

generate and endorse STP proofs for each other, while

at the same time it does not eliminate the possibility of

utilizing wireless infrastructures as more trusted proof

generation sources. In addition, in contrast to most of

the existing schemes which require multiple trusted or

semi-trusted third parties, STAMP requires only a

single semi-trusted third party which can be embedded

in a Certificate Authority (CA). We design our system

with an objective of protecting users' anonymity and

location privacy. No parties other than verifiers could

see both a user's identity and STP information (verifiers

need both identity and STP information in order to

perform verification and provide services). Users are

given the flexibility to choose the location granularity

level that is revealed to the verifier.

ADVANTAGES:

• Our security analysis shows that STAMP

achieves the security and privacy objectives.

• Our implementation on Android smartphones

indicates that low computational and storage

resources are required to execute STAMP.

• Extensive simulation results show that our

trust model is able to attain a high balanced

accuracy with appropriate choices of system

parameters.

3. PROJECT DESCRIPTION

3.1 GENERAL

STAMP aims at ensuring the integrity and non-trans-

fesability of the STP proofs, with the capability of

protecting user’s privacy.

3.2 PROBLEM DEFINITION

The system that is most closely related to our work is a

location proof system that is also based on co-located

mobile devices mutually generating location proofs. In

order to protect privacy, the knowledge of private

information is separately distributed to three parties: a

location proof server, a CA, and the verifier.

Periodically changed pseudonyms are used by the

mobile devices to protect their real identities from each

other, and from the location proof server. We believe

the location proof server is redundant for

accomplishing the goals. Periodically changed

pseudonyms incurs high operational overhead because

of the requirement for highly cautious management and

scheduling. Dummy proofs have to be regularly

generated in order to achieve the privacy properties,

which also incurs high communication and storage

overhead.

3.3 METHODOLOGIES

Enabling Privacy-Preserving Location Proofs for

Mobile Users Use the DES Algorithm. The user

searched location are encrypted and that encrypted can

be viewed only by the verifier and certificate authority,

even the verifier and the certificate authority can view

only in the form of encryption. Thus the location

cannot be found by the third party or unknown person.

3.3.1 MODULE DESCRIPTION & MODULE

DIAGRAMS

MODULES

• User Module

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1809
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

- Sign In Module

- Sign Up Module

• Verifier Module

• Certificate Authority Module

4. SYSTEM REQUIREMENTS

4.1 HARDWARE REQUIREMENTS

 System :

 Pentium IV 2.4 GHz.

 Hard Disk :

 40 GB.

 Floppy Drive :

 1.44 Mb.

 Monitor :

 15 VGA Colour.

 Mouse :

 Logitech.

 Ram

 : 512 Mb.

4.2 SOFTWARE REQUIREMENTS:

 Operating system :

 Windows XP/7.

 Coding Language :

 JAVA/J2EE

 IDE: Netbeans 7.4

 Database : MYSQL

5. SYSTEM DESIGN

5.1 GENERAL

System design is a process to transform user

requirements into some suitable form, which helps the

programmer in software coding and implementation.

For assessing user requirements, an SRS (Software

Requirement Specification) document is created

whereas for coding and implementation, there is a

need of more specific and detailed requirements in

software terms. The output of this process can directly

be used into implementation in programming

languages.

Software design is the first step in SDLC (Software

Design Life Cycle), which moves the concentration

from problem domain to solution domain. It tries to

specify how to fulfill the requirements mentioned in

SRS.

Fig 1.0 SYSTEM DESIGN

5.2.1 SYSTEM ARCHITECTURE

Fig 1.1 DEPLOYMENT DIAGRAM

User

Verifier

Register

Fig1.2 USE CASE DIAGRAM

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1810
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Virtual object based service

Add virtual objects

Normal Search

Search services POI

wating for CA Permission

Virtual object services

Add new services

Verify user proofs

Login

Register

Certificate Authority

Verifier

User

send request to certificate

Verify user's location

Verify personal details

Fig1.3 Class Diagram

Fig1.4 Sequence diagram

6. SOFTWARE TESTING

6.1 GENERAL

 The purpose of testing is to discover errors. Testing is

the process of trying to discover every conceivable

fault or weakness in a work product. It provides a way

to check the functionality of components, sub

assemblies, assemblies and/or a finished product It is

the process of exercising software with the intent of

ensuring that the

Software system meets its requirements and user

expectations and does not fail in an unacceptable

manner. There are various types of test. Each test type

addresses a specific testing requirement.

6.2 DEVELOPING METHODOLOGIES

The test process is initiated by developing a

comprehensive plan to test the general functionality

and special features on a variety of platform

combinations. Strict quality control procedures are

used.

The process verifies that the application meets the

requirements specified in the system requirements

document and is bug free. The following are the

considerations used to develop the framework from

developing the testing methodologies.

6.3 TYPES OF TESTS

6.3.1 Unit Test

Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program input produces valid

outputs. All decision branches and internal code flow

should be validated. It is the testing of individual

software units of the application. It is done after the

completion of an individual unit before integration.

This is a structural testing, that relies on knowledge of

its construction and is invasive. Unit tests perform

User

+Register
+Login
+waiting for CA Permission
+search service POI
+Normal search
+Add Virtual Objects
+Virtual object based service

+Request for certificate authority()
+Request for Verifier()

Certificate Authority

+Login
+Verify user proofs
+add new services
+view user queries
+virtual object services

+Response for user()
+Request for verifier()

Verifier

+Login
+Verfiy personal details
+verify user's locations
+send request to certificate
+User location and verified location

+Response for the certificate authority()
+Request for the user()

User Certificate Authority Verifier Server

1 : Registration()

2 : Login()

3 : Waiting for CA Permission()

4 : Search serviece POI()

5 : Normal Search()

6 : Add virtual objects()

7 : Virtual object based service()

8 : Login()

9 : verify personal details()

10

11 : verify user's locations()

12 : . Send request to certificate authority()

13 : Login()

14 : Verify user proofs()

15 : Add new services()

16 : View user queries()

17 : Virtual objectt services()

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1811
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

basic tests at component level and test a specific

business process, application, and/or system

configuration. Unit tests ensure that each unique path

of a business process performs accurately to the

documented specifications and contains clearly defined

inputs and expected results.

6.3.2 Functional Test

Functional tests provide systematic demonstrations that

functions tested are available as specified by the

business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of

valid input must be accepted

Invalid Input : identified classes of

invalid input must be rejected

Functions : identified functions must be

exercised

Output : identified classes of

application outputs must be exercised

Systems/Procedures : interfacing systems or

procedures must be invoked.

6.3.3 System Test

System testing ensures that the entire integrated

software system meets requirements. It tests a

configuration to ensure known and predictable results.

An example of system testing is the configuration

oriented system integration test. System testing is based

on process descriptions and flows, emphasizing pre-

driven process links and integration points.

6.3.4 Performance Test

The performance test ensures that the output be

produced within the time limits, and the time taken by

the system for compiling, giving response to the users

and request being send to the system for to retrieve the

results.

6.3.5 Integration Test

Software integration testing is the incremental

integration testing of two or more integrated software

components on a single platform to produce failures

caused by interface defects.

6.3.6 Acceptance Test

User Acceptance Testing is a critical phase of any

project and requires significant participation by the end

user. It also ensures that the system meets the

functional requirements.

Acceptance Testing for Data Synchronization:

 The Acknowledgements will be

received by the Sender Node after

the Packets are received by the

Destination Node.

 The Route add operation is done

only when there is a Route request

in need

 The status of Nodes information is

done automatically in the Cache

Updating process.

6.3.7 Build the test plan

Any project can be divided into units that can be further

performed for detailed processing. Then a testing

strategy for each of this unit is carried out. Unit testing

helps to identify the possible bugs in the individual

component, so the component that has bugs can be

identified and can be rectified from errors.

7. APPLICATION

7.1 GENERAL

This session gives the details of our application usage

in secure Image transmission and its Usefulness.

7.2. APPLICATION

USE IN MODERN PRINTERS

The larger the Target Image (in binary data, the number

of bits) relative to the hidden Encrypted Image, the

easier it is to hide the latter. For this reason, digital

pictures (which contain large amounts of data) are used

to hide messages on the Internet and on other

communication media. It is not clear how common this

actually is. For example: a 24-bit bitmap uses 8 bits to

represent each of the three colour values (red, green,

and blue) at each pixel. The blue alone has 28 different

levels of blue intensity. The difference between

11111111 and 11111110 in the value for blue intensity

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Bitmap
https://en.wikipedia.org/wiki/Pixel

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1812
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

is likely to be undetectable by the human eye.

Therefore, the least significant bit can be used more or

less undetectably for something else other than colour

information. If this is repeated for the green and the red

elements of each pixel as well, it is possible to encode

one byte of Encrypted Image for every three pixels.

Some modern computer printers use steganography,

including HP and Xerox brand colour laser printers.

These printers could print the Dots which are Actually

the Encrypted Byte Array which can be recovered on

scanning the Image.

USE IN MOBILE APPLICATIONS

Can be used as an Android / iOS Application to to

secure images so that if Users do not want third party

apps or users to access their content, they could make

use of the App to Encrypt and Transform the Image

into something that is irrelevant to the context of the

Original Image. That way, the third party Apps or users

will not be able to guess that the image has been

transformed,hence they wouldn’t be interested in that

Image at all. Lots of Online Blackmailing and abuse

can be prevented with the safety features this

application provides. It’s a viable method to ensure

Privacy and Protection of personal Content.

CONCLUSION

In this paper we have presented STAMP, which aims at

providing security and privacy assurance to mobile

users' proofs for their past location visits. STAMP

relies on mobile devices in vicinity to mutually

generate location proofs or uses wireless APs to

generate location proofs. Integrity and non-

transferability of location proofs and location privacy

of users are the main design goals of STAMP.We have

specifically dealt with two collusion scenarios: P-P

collusion and P-W collusion. To protect against P-P

collusions, we integrated the Bussard-Bagga distance

bounding protocol into the design of STAMP. To

detect P-W collusion, we proposed an entropy-based

trust model to evaluate the trust level of claims of the

past location visits. Our security analysis shows that

STAMP achieves the security and privacy objectives.

Our implementation on Android smartphones indicates

that low computational and storage resources are

required to execute STAMP. Extensive simulation

results show that our trust model is able to attain a high

balanced accuracy (> 0.9) with appropriate choices of

system parameters.

APPENDIX 1

SAMPLE CODING

public class EncryptDecrypt {

 public static void main(String arg[]) {
 EncryptDecrypt edObj = new EncryptDecrypt();
 //String str =
"1631691691631541571631541662192072232192072
23219227231";
 String str =
"abcdefghijklmnopqrstuvwwwwxyyzzzz";
 String enCryptStr = edObj.Encrypt(str);
 System.out.println(" Encrypted string : " +
enCryptStr);
 System.out.println(" Decrypted string : " +
edObj.Decrypt(enCryptStr));
 }

 //Encryption method
 public String Encrypt(String passwd) {
 int i, len, asci_code, temp_val = 0;
 char ch;
 String out_str = new String();
 len = passwd.length();
 for (i = 0; i < len; i++) {
 ch = passwd.charAt(i);
 asci_code = getAscii(ch);
 if (i < len / 2) {
 temp_val = (asci_code * 3) + 10;
 } else {
 temp_val = (asci_code * 4) + 11;
 }
 out_str = out_str + temp_val;
 }
 return out_str;
 }

 public char getCharec(int i) {
 /*for(int x=0;x<=arr.length;x++) {
 if(arr[x] == i) {
 return (chars.charAt(x));
 }

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Xerox

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1813
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 }
 return 0;*/
 return (char) i;
 }

 public int getAscii(char c) {
 /*for(int x=0;x<=chars.length();x++){
 if(chars.charAt(x) == c) {
 return (arr[x]);
 }
 }
 return 0;*/
 return (int) c;
 }

 /**
 * this function is to decrypt the password
 * @param string password
 */
 public String Decrypt(String passwd) {
 int i, len, asci_code, temp_val = 0;
 String out_str = new String();
 String char_str = new String();
 len = passwd.length();
 for (i = 0; i < len; i += 3) {
 if ((i + 3) <= len) {
 char_str = passwd.substring(i, i + 3);
 asci_code = Integer.parseInt(char_str);
 if (i < (len - 2) / 2) {
 temp_val = ((asci_code - 10) / 3);
 } else {
 temp_val = ((asci_code - 11) / 4);
 }
 }
 out_str = out_str + this.getCharec(temp_val);
 }
 return (out_str);
 }
}

/*
 * To change this license header, choose License
Headers in Project Properties.
 * To change this template file, choose Tools |
Templates
 * and open the template in the editor.
 */

import java.io.IOException;
import java.io.PrintWriter;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 *

 * @author Sai Krishna
 */
public class insert extends HttpServlet {

 /**
 * Processes requests for both HTTP
<code>GET</code> and <code>POST</code>
 * methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific
error occurs
 * @throws IOException if an I/O error occurs
 */
 String name,add,lati,longi,map,cate;
 protected void processRequest(HttpServletRequest
request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html;charset=UTF-
8");
 PrintWriter out = response.getWriter();
 {
 try {
 name=request.getParameter("name");
 add=request.getParameter("add");
 lati=request.getParameter("lati");
 longi=request.getParameter("longi");
 map=request.getParameter("map");
 cate=request.getParameter("cate");
 Class.forName("com.mysql.jdbc.Driver");
 Connection con =
DriverManager.getConnection("jdbc:mysql://localhost:
3306/loc","root","root");
 String sql="insert into det
(name,address,lav,lov,map,cate) values
('"+name+"','"+add+"','"+lati+"','"+longi+"','"+map+"','"
+cate+"')";
 PreparedStatement
pss=con.prepareStatement(sql);
 int executeUpdate = pss.executeUpdate();
 out.println("<script>"
 +"alert('Details
are inserted successfully')"
 +"</script>");
 RequestDispatcher
rd=request.getRequestDispatcher("/insert.jsp");
 rd.include(request, response);

 } catch (Exception ex)
 {

Logger.getLogger(Reg.class.getName()).log(Level.SE
VERE, null, ex);
 out.println("<script>"
 +"alert('Please
Check your Database Connection')"
 +"</script>");
 RequestDispatcher
rd=request.getRequestDispatcher("/insert.jsp");
 rd.include(request, response);
 }
 }

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1814
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 }

 // <editor-fold defaultstate="collapsed"
desc="HttpServlet methods. Click on the + sign on the
left to edit the code.">
 /**
 * Handles the HTTP <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific
error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Handles the HTTP <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific
error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }// </editor-fold>

}

/*
 * To change this license header, choose License
Headers in Project Properties.
 * To change this template file, choose Tools |
Templates
 * and open the template in the editor.
 */

import java.io.IOException;
import java.io.PrintWriter;
import java.security.SecureRandom;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;

import java.sql.ResultSet;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

/**
 *
 * @author Sai Krishna
 */
public class login extends HttpServlet {

 /**
 * Processes requests for both HTTP
<code>GET</code> and <code>POST</code>
 * methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific
error occurs
 * @throws IOException if an I/O error occurs
 */

 String name,pass1,p="";
 protected void processRequest(HttpServletRequest
request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-
8");
 PrintWriter out = response.getWriter();

 try {
 name=request.getParameter("user");
 pass1=request.getParameter("pass");

 Class.forName("com.mysql.jdbc.Driver");
 Connection con =
DriverManager.getConnection("jdbc:mysql://localhost:
3306/loc", "root","root");
 String q="select * from reg where
name='"+name+"' and pass='"+pass1+"'";
 PreparedStatement
ps=con.prepareStatement(q);
 ResultSet rs = ps.executeQuery();
 if(rs.next())
 {
 out.println("<script>"
 +"alert('Valid User')"
 +"</script>");
 HttpSession session=request.getSession();
 session.setAttribute("name", name);
 session.setAttribute("pass", pass1);
 RequestDispatcher
rd=request.getRequestDispatcher("/userhome.jsp");
 rd.include(request, response);
 }
 else
if(name.equals("lbs")&&pass1.equals("lbs"))

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1815
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 {
 out.println("<script>"
 +"alert('Welcome Admin')"
 +"</script>");
 RequestDispatcher
rd=request.getRequestDispatcher("/adminhome.jsp");

 rd.include(request, response);
 }
 else{
 out.println("<script>"
 +"alert('Invalid Login')"
 +"</script>");

 RequestDispatcher
rd=request.getRequestDispatcher("/index.jsp");
 rd.include(request, response);
 }
 } catch (Exception ex)

 {

Logger.getLogger(login.class.getName()).log(Level.SE
VERE, null, ex);
 }
 }

 // <editor-fold defaultstate="collapsed"
desc="HttpServlet methods. Click on the + sign on the
left to edit the code.">
 /**
 * Handles the HTTP <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific
error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Handles the HTTP <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific
error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }// </editor-fold>

}

APPENDIX 2

SCREENSHOTS

A2.1 User Registration

A2.2 Verifier Login

A2.3 Certificate Authority Login

A2.4 User Login

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1816
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

A2.5 Location Enabled

 REFERENCES

[1] S. Saroiu and A. Wolman, “Enabling new mobile

applications with location proofs,” in Proc. ACM

HotMobile, 2009, Art. no. 3.

[2] W. Luo and U. Hengartner, “VeriPlace: A privacy-

aware location proof architecture,” in Proc. ACM GIS,

2010, pp. 23–32.

[3] Z. Zhu and G. Cao, “Towards privacy-preserving

and colluding-resistance in location proof updating

system,” IEEE Trans. Mobile Comput., vol. 12, no. 1,

pp. 51–64, Jan. 2011.

[4] N. Sastry, U. Shankar, and D. Wagner, “Secure

verification of location claims,” in Proc. ACM WiSe,

2003, pp. 1–10.

[5] R. Hasan and R. Burns, “Where have you been?

secure location provenance for mobile devices,” CoRR

2011.

[6] B. Davis, H. Chen, and M. Franklin, “Privacy

preserving alibi systems,” in Proc. ACM ASIACCS,

2012, pp. 34–35.

[7] I. Krontiris, F. Freiling, and T. Dimitriou, “Location

privacy in urban sensing networks: Research challenges

and directions,” IEEE Wireless Commun., vol. 17, no.

5, pp. 30–35, Oct. 2010.

[8] Y. Desmedt, “Major security problems with the

‘unforgeable’ (feige)- fiat-shamir proofs of identity and

how to overcome them,” in Proc. SecuriCom, 1988, pp.

15–17.

[9] L. Bussard and W. Bagga, “Distance-bounding

proof of knowledge to avoid real-time attacks,” in

Security and Privacy in the Age of Ubiquitous

Computing. New York, NY, USA: Springer, 2005.

[10] B. Waters and E. Felten, “Secure, private proofs of

location,” Department of Computer Science, Princeton

University, Princeton, NJ, USA, Tech. Rep., 2003.

[11] X. Wang et al., “STAMP: Ad hoc spatial-temporal

provenance assurance for mobile users,” in Proc. IEEE

ICNP, 2013, pp. 1–10.

[12] A. Pfitzmann and M. Köhntopp, “Anonymity,

unobservability, and pseudonymity-a proposal for

terminology,” in Designing Privacy Enhancing

Technologies. New York, NY, USA: Springer, 2001.

[13] Y.-C. Hu, A. Perrig, and D. B. Johnson,

“Wormhole attacks in wireless networks,” IEEE J. Sel.

Areas Commun., vol. 24, no. 2, pp. 370–380, Feb.

2006.

[14] S. Halevi and S. Micali, “Practical and provably-

secure commitment schemes from collision-free

hashing,” in Proc. CRYPTO, 1996, pp. 201–215.

[15] I. Damgård, “Commitment schemes and zero-

knowledge protocols,” in Proc. Lectures Data Security,

1999, pp. 63–86.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 1817
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[16] I. Haitner and O. Reingold, “Statistically-hiding

commitment from any one-way function,” in Proc.

ACM Symp. Theory Comput., 2007, pp. 1–10.

[17] D. Singelee and B. Preneel, “Location verification

using secure distance bounding protocols,” in Proc.

IEEE MASS, 2005.

IJSER

http://www.ijser.org/

